🕸️Deployment of a Microservices Application on K8s🕸️

🕸️Deployment of a Microservices Application on K8s🕸️

Microservice application built using Flask and deployed on Kubernetes. It is designed to demonstrate how to build and deploy microservices on a Kubernetes cluster

Kubeadm Installation Guide

This guide outlines the steps needed to set up a Kubernetes cluster using kubeadm.

Pre-requisites

  • Ubuntu OS (Xenial or later)

  • sudo privileges

  • Internet access

  • t2.medium instance type or higher

Both Master & Worker Node

Run the following commands on both the master and worker nodes to prepare them for kubeadm.

# disable swap
sudo swapoff -a

# Create the .conf file to load the modules at bootup
cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf
overlay
br_netfilter
EOF

sudo modprobe overlay
sudo modprobe br_netfilter

# sysctl params required by setup, params persist across reboots
cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-iptables  = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.ipv4.ip_forward                 = 1
EOF

# Apply sysctl params without reboot
sudo sysctl --system

## Install CRIO Runtime
sudo apt-get update -y
sudo apt-get install -y software-properties-common curl apt-transport-https ca-certificates gpg

sudo curl -fsSL https://pkgs.k8s.io/addons:/cri-o:/prerelease:/main/deb/Release.key | sudo gpg --dearmor -o /etc/apt/keyrings/cri-o-apt-keyring.gpg
echo "deb [signed-by=/etc/apt/keyrings/cri-o-apt-keyring.gpg] https://pkgs.k8s.io/addons:/cri-o:/prerelease:/main/deb/ /" | sudo tee /etc/apt/sources.list.d/cri-o.list

sudo apt-get update -y
sudo apt-get install -y cri-o

sudo systemctl daemon-reload
sudo systemctl enable crio --now
sudo systemctl start crio.service

echo "CRI runtime installed successfully"

# Add Kubernetes APT repository and install required packages
curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.29/deb/Release.key | sudo gpg --dearmor -o /etc/apt/keyrings/kubernetes-apt-keyring.gpg
echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg] https://pkgs.k8s.io/core:/stable:/v1.29/deb/ /' | sudo tee /etc/apt/sources.list.d/kubernetes.list

sudo apt-get update -y
sudo apt-get install -y kubelet="1.29.0-*" kubectl="1.29.0-*" kubeadm="1.29.0-*"
sudo apt-get update -y
sudo apt-get install -y jq

sudo systemctl enable --now kubelet
sudo systemctl start kubelet

Master Node

  1. Initialize the Kubernetes master node

    ```bash sudo kubeadm config images pull

    sudo kubeadm init

    mkdir -p "$HOME"/.kube sudo cp -i /etc/kubernetes/admin.conf "$HOME"/.kube/config sudo chown "$(id -u)":"$(id -g)" "$HOME"/.kube/config

Network Plugin = calico

kubectl apply -f raw.githubusercontent.com/projectcalico/cal..

kubeadm token create --print-join-command


    **<mark>Expose port 6443 in the Security group for the Worker to connect to Master Node</mark>**


* ## Worker Node

* Run the following commands on the worker node.

* ```bash
      sudo kubeadm reset pre-flight checks 
      sudo your-token --v=5

Paste the join command you got from the master node and append --v=5 at the end. Make sure either you are working as sudo user or usesudo before the command.

  • Deployment of a Microservices Application on K8s

    - Do Mongo Db Deployment

    - Do Flask App Deployment

    - Connect both using Service Discovery

    Installation

    To install and run the application on your Kubernetes cluster, follow these steps:

    1. Clone this repository to your local machine.

      git clone https://github.com/SanketShirke/Microservices-K8s.git

    2. Navigate to the project root directory.

    3. Create a Kubernetes deployment and service by running the following command:

kubectl apply -f <yml files.yml

  • Verify that the deployment and service have been created successfully by running the following command:

    kubectl get nodes

  • kubectl get pods

  • kubectl get deployments

  • kubectl get services

    • After that go to your AWS account click on master node go to security group and create a port number as per your given in python-svc.yml

      Example:- http://ip.adress:30007

    • After that open a new tab and past your IP and port number

If everything is working properly, you should see the name of your deployment and service listed in the output.